'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { dx(X) -> one() , dx(a()) -> zero() , dx(plus(ALPHA, BETA)) -> plus(dx(ALPHA), dx(BETA)) , dx(times(ALPHA, BETA)) -> plus(times(BETA, dx(ALPHA)), times(ALPHA, dx(BETA))) , dx(minus(ALPHA, BETA)) -> minus(dx(ALPHA), dx(BETA)) , dx(neg(ALPHA)) -> neg(dx(ALPHA)) , dx(div(ALPHA, BETA)) -> minus(div(dx(ALPHA), BETA), times(ALPHA, div(dx(BETA), exp(BETA, two())))) , dx(ln(ALPHA)) -> div(dx(ALPHA), ALPHA) , dx(exp(ALPHA, BETA)) -> plus(times(BETA, times(exp(ALPHA, minus(BETA, one())), dx(ALPHA))), times(exp(ALPHA, BETA), times(ln(ALPHA), dx(BETA))))} Details: We have computed the following set of weak (innermost) dependency pairs: { dx^#(X) -> c_0() , dx^#(a()) -> c_1() , dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA)) , dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA)) , dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA)) , dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA)) , dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA)) , dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA)) , dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))} The usable rules are: {} The estimated dependency graph contains the following edges: {dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))} {dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA))} {dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA))} {dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA))} {dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))} {dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} {dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA))} {dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(a()) -> c_1()} {dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(X) -> c_0()} {dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))} {dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA))} {dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA))} {dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA))} {dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))} {dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} {dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA))} {dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(a()) -> c_1()} {dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(X) -> c_0()} {dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))} {dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA))} {dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA))} {dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA))} {dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))} {dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} {dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA))} {dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(a()) -> c_1()} {dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(X) -> c_0()} {dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA))} ==> {dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))} {dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA))} ==> {dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA))} {dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA))} ==> {dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA))} {dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA))} ==> {dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA))} {dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA))} ==> {dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))} {dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA))} ==> {dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} {dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA))} ==> {dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA))} {dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA))} ==> {dx^#(a()) -> c_1()} {dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA))} ==> {dx^#(X) -> c_0()} {dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))} {dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA))} {dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA))} {dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA))} {dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))} {dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} {dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA))} {dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(a()) -> c_1()} {dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(X) -> c_0()} {dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA))} ==> {dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))} {dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA))} ==> {dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA))} {dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA))} ==> {dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA))} {dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA))} ==> {dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA))} {dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA))} ==> {dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))} {dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA))} ==> {dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} {dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA))} ==> {dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA))} {dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA))} ==> {dx^#(a()) -> c_1()} {dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA))} ==> {dx^#(X) -> c_0()} {dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))} {dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA))} {dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA))} {dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA))} {dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))} {dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} {dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA))} {dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(a()) -> c_1()} {dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))} ==> {dx^#(X) -> c_0()} We consider the following path(s): 1) { dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA)) , dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA)) , dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA)) , dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA)) , dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA)) , dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA)) , dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: dx(x1) = [0] x1 + [0] one() = [0] a() = [0] zero() = [0] plus(x1, x2) = [0] x1 + [0] x2 + [0] times(x1, x2) = [0] x1 + [0] x2 + [0] minus(x1, x2) = [0] x1 + [0] x2 + [0] neg(x1) = [0] x1 + [0] div(x1, x2) = [0] x1 + [0] x2 + [0] exp(x1, x2) = [0] x1 + [0] x2 + [0] two() = [0] ln(x1) = [0] x1 + [0] dx^#(x1) = [0] x1 + [0] c_0() = [0] c_1() = [0] c_2(x1, x2) = [0] x1 + [0] x2 + [0] c_3(x1, x2) = [0] x1 + [0] x2 + [0] c_4(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1, x2) = [0] x1 + [0] x2 + [0] c_7(x1) = [0] x1 + [0] c_8(x1, x2) = [0] x1 + [0] x2 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: { dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA)) , dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA)) , dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA)) , dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA)) , dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA)) , dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA)) , dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA))} Details: Interpretation Functions: dx(x1) = [0] x1 + [0] one() = [0] a() = [0] zero() = [0] plus(x1, x2) = [1] x1 + [1] x2 + [0] times(x1, x2) = [1] x1 + [1] x2 + [0] minus(x1, x2) = [1] x1 + [1] x2 + [0] neg(x1) = [1] x1 + [8] div(x1, x2) = [1] x1 + [1] x2 + [0] exp(x1, x2) = [1] x1 + [1] x2 + [0] two() = [0] ln(x1) = [1] x1 + [0] dx^#(x1) = [1] x1 + [1] c_0() = [0] c_1() = [0] c_2(x1, x2) = [1] x1 + [1] x2 + [1] c_3(x1, x2) = [1] x1 + [1] x2 + [1] c_4(x1, x2) = [1] x1 + [1] x2 + [1] c_5(x1) = [1] x1 + [0] c_6(x1, x2) = [1] x1 + [1] x2 + [1] c_7(x1) = [1] x1 + [0] c_8(x1, x2) = [1] x1 + [1] x2 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} and weakly orienting the rules {dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} Details: Interpretation Functions: dx(x1) = [0] x1 + [0] one() = [0] a() = [0] zero() = [0] plus(x1, x2) = [1] x1 + [1] x2 + [0] times(x1, x2) = [1] x1 + [1] x2 + [8] minus(x1, x2) = [1] x1 + [1] x2 + [0] neg(x1) = [1] x1 + [2] div(x1, x2) = [1] x1 + [1] x2 + [0] exp(x1, x2) = [1] x1 + [1] x2 + [0] two() = [0] ln(x1) = [1] x1 + [0] dx^#(x1) = [1] x1 + [1] c_0() = [0] c_1() = [0] c_2(x1, x2) = [1] x1 + [1] x2 + [1] c_3(x1, x2) = [1] x1 + [1] x2 + [1] c_4(x1, x2) = [1] x1 + [1] x2 + [1] c_5(x1) = [1] x1 + [0] c_6(x1, x2) = [1] x1 + [1] x2 + [1] c_7(x1) = [1] x1 + [0] c_8(x1, x2) = [1] x1 + [1] x2 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA))} and weakly orienting the rules { dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA)) , dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA))} Details: Interpretation Functions: dx(x1) = [0] x1 + [0] one() = [0] a() = [0] zero() = [0] plus(x1, x2) = [1] x1 + [1] x2 + [0] times(x1, x2) = [1] x1 + [1] x2 + [8] minus(x1, x2) = [1] x1 + [1] x2 + [0] neg(x1) = [1] x1 + [0] div(x1, x2) = [1] x1 + [1] x2 + [8] exp(x1, x2) = [1] x1 + [1] x2 + [0] two() = [0] ln(x1) = [1] x1 + [0] dx^#(x1) = [1] x1 + [1] c_0() = [0] c_1() = [0] c_2(x1, x2) = [1] x1 + [1] x2 + [1] c_3(x1, x2) = [1] x1 + [1] x2 + [1] c_4(x1, x2) = [1] x1 + [1] x2 + [1] c_5(x1) = [1] x1 + [0] c_6(x1, x2) = [1] x1 + [1] x2 + [1] c_7(x1) = [1] x1 + [0] c_8(x1, x2) = [1] x1 + [1] x2 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))} and weakly orienting the rules { dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA)) , dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA)) , dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA))} Details: Interpretation Functions: dx(x1) = [0] x1 + [0] one() = [0] a() = [0] zero() = [0] plus(x1, x2) = [1] x1 + [1] x2 + [0] times(x1, x2) = [1] x1 + [1] x2 + [8] minus(x1, x2) = [1] x1 + [1] x2 + [8] neg(x1) = [1] x1 + [0] div(x1, x2) = [1] x1 + [1] x2 + [7] exp(x1, x2) = [1] x1 + [1] x2 + [0] two() = [0] ln(x1) = [1] x1 + [0] dx^#(x1) = [1] x1 + [1] c_0() = [0] c_1() = [0] c_2(x1, x2) = [1] x1 + [1] x2 + [1] c_3(x1, x2) = [1] x1 + [1] x2 + [1] c_4(x1, x2) = [1] x1 + [1] x2 + [1] c_5(x1) = [1] x1 + [0] c_6(x1, x2) = [1] x1 + [1] x2 + [1] c_7(x1) = [1] x1 + [0] c_8(x1, x2) = [1] x1 + [1] x2 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA))} and weakly orienting the rules { dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA)) , dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA)) , dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA)) , dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA))} Details: Interpretation Functions: dx(x1) = [0] x1 + [0] one() = [0] a() = [0] zero() = [0] plus(x1, x2) = [1] x1 + [1] x2 + [0] times(x1, x2) = [1] x1 + [1] x2 + [7] minus(x1, x2) = [1] x1 + [1] x2 + [8] neg(x1) = [1] x1 + [15] div(x1, x2) = [1] x1 + [1] x2 + [8] exp(x1, x2) = [1] x1 + [1] x2 + [0] two() = [0] ln(x1) = [1] x1 + [8] dx^#(x1) = [1] x1 + [1] c_0() = [0] c_1() = [0] c_2(x1, x2) = [1] x1 + [1] x2 + [1] c_3(x1, x2) = [1] x1 + [1] x2 + [1] c_4(x1, x2) = [1] x1 + [1] x2 + [1] c_5(x1) = [1] x1 + [15] c_6(x1, x2) = [1] x1 + [1] x2 + [1] c_7(x1) = [1] x1 + [7] c_8(x1, x2) = [1] x1 + [1] x2 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))} and weakly orienting the rules { dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA)) , dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA)) , dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA)) , dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA)) , dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA))} Details: Interpretation Functions: dx(x1) = [0] x1 + [0] one() = [0] a() = [0] zero() = [0] plus(x1, x2) = [1] x1 + [1] x2 + [0] times(x1, x2) = [1] x1 + [1] x2 + [8] minus(x1, x2) = [1] x1 + [1] x2 + [2] neg(x1) = [1] x1 + [7] div(x1, x2) = [1] x1 + [1] x2 + [8] exp(x1, x2) = [1] x1 + [1] x2 + [8] two() = [0] ln(x1) = [1] x1 + [0] dx^#(x1) = [1] x1 + [1] c_0() = [0] c_1() = [0] c_2(x1, x2) = [1] x1 + [1] x2 + [1] c_3(x1, x2) = [1] x1 + [1] x2 + [3] c_4(x1, x2) = [1] x1 + [1] x2 + [1] c_5(x1) = [1] x1 + [1] c_6(x1, x2) = [1] x1 + [1] x2 + [3] c_7(x1) = [1] x1 + [0] c_8(x1, x2) = [1] x1 + [1] x2 + [6] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA))} and weakly orienting the rules { dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA)) , dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA)) , dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA)) , dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA)) , dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA)) , dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA))} Details: Interpretation Functions: dx(x1) = [0] x1 + [0] one() = [0] a() = [0] zero() = [0] plus(x1, x2) = [1] x1 + [1] x2 + [8] times(x1, x2) = [1] x1 + [1] x2 + [8] minus(x1, x2) = [1] x1 + [1] x2 + [2] neg(x1) = [1] x1 + [1] div(x1, x2) = [1] x1 + [1] x2 + [8] exp(x1, x2) = [1] x1 + [1] x2 + [8] two() = [0] ln(x1) = [1] x1 + [0] dx^#(x1) = [1] x1 + [1] c_0() = [0] c_1() = [0] c_2(x1, x2) = [1] x1 + [1] x2 + [1] c_3(x1, x2) = [1] x1 + [1] x2 + [1] c_4(x1, x2) = [1] x1 + [1] x2 + [1] c_5(x1) = [1] x1 + [0] c_6(x1, x2) = [1] x1 + [1] x2 + [6] c_7(x1) = [1] x1 + [0] c_8(x1, x2) = [1] x1 + [1] x2 + [7] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA)) , dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA)) , dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA)) , dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA)) , dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA)) , dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA)) , dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA))} Details: The given problem does not contain any strict rules 2) { dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA)) , dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA)) , dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA)) , dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA)) , dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA)) , dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA)) , dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA)) , dx^#(a()) -> c_1()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: dx(x1) = [0] x1 + [0] one() = [0] a() = [0] zero() = [0] plus(x1, x2) = [0] x1 + [0] x2 + [0] times(x1, x2) = [0] x1 + [0] x2 + [0] minus(x1, x2) = [0] x1 + [0] x2 + [0] neg(x1) = [0] x1 + [0] div(x1, x2) = [0] x1 + [0] x2 + [0] exp(x1, x2) = [0] x1 + [0] x2 + [0] two() = [0] ln(x1) = [0] x1 + [0] dx^#(x1) = [0] x1 + [0] c_0() = [0] c_1() = [0] c_2(x1, x2) = [0] x1 + [0] x2 + [0] c_3(x1, x2) = [0] x1 + [0] x2 + [0] c_4(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1, x2) = [0] x1 + [0] x2 + [0] c_7(x1) = [0] x1 + [0] c_8(x1, x2) = [0] x1 + [0] x2 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {dx^#(a()) -> c_1()} Weak Rules: { dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA)) , dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA)) , dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA)) , dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA)) , dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA)) , dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA)) , dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} Details: We apply the weight gap principle, strictly orienting the rules {dx^#(a()) -> c_1()} and weakly orienting the rules { dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA)) , dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA)) , dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA)) , dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA)) , dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA)) , dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA)) , dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {dx^#(a()) -> c_1()} Details: Interpretation Functions: dx(x1) = [0] x1 + [0] one() = [0] a() = [0] zero() = [0] plus(x1, x2) = [1] x1 + [1] x2 + [8] times(x1, x2) = [1] x1 + [1] x2 + [8] minus(x1, x2) = [1] x1 + [1] x2 + [7] neg(x1) = [1] x1 + [0] div(x1, x2) = [1] x1 + [1] x2 + [8] exp(x1, x2) = [1] x1 + [1] x2 + [8] two() = [0] ln(x1) = [1] x1 + [15] dx^#(x1) = [1] x1 + [1] c_0() = [0] c_1() = [0] c_2(x1, x2) = [1] x1 + [1] x2 + [3] c_3(x1, x2) = [1] x1 + [1] x2 + [7] c_4(x1, x2) = [1] x1 + [1] x2 + [1] c_5(x1) = [1] x1 + [0] c_6(x1, x2) = [1] x1 + [1] x2 + [0] c_7(x1) = [1] x1 + [0] c_8(x1, x2) = [1] x1 + [1] x2 + [7] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { dx^#(a()) -> c_1() , dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA)) , dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA)) , dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA)) , dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA)) , dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA)) , dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA)) , dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} Details: The given problem does not contain any strict rules 3) { dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA)) , dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA)) , dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA)) , dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA)) , dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA)) , dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA)) , dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA)) , dx^#(X) -> c_0()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: dx(x1) = [0] x1 + [0] one() = [0] a() = [0] zero() = [0] plus(x1, x2) = [0] x1 + [0] x2 + [0] times(x1, x2) = [0] x1 + [0] x2 + [0] minus(x1, x2) = [0] x1 + [0] x2 + [0] neg(x1) = [0] x1 + [0] div(x1, x2) = [0] x1 + [0] x2 + [0] exp(x1, x2) = [0] x1 + [0] x2 + [0] two() = [0] ln(x1) = [0] x1 + [0] dx^#(x1) = [0] x1 + [0] c_0() = [0] c_1() = [0] c_2(x1, x2) = [0] x1 + [0] x2 + [0] c_3(x1, x2) = [0] x1 + [0] x2 + [0] c_4(x1, x2) = [0] x1 + [0] x2 + [0] c_5(x1) = [0] x1 + [0] c_6(x1, x2) = [0] x1 + [0] x2 + [0] c_7(x1) = [0] x1 + [0] c_8(x1, x2) = [0] x1 + [0] x2 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {dx^#(X) -> c_0()} Weak Rules: { dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA)) , dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA)) , dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA)) , dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA)) , dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA)) , dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA)) , dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} Details: We apply the weight gap principle, strictly orienting the rules {dx^#(X) -> c_0()} and weakly orienting the rules { dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA)) , dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA)) , dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA)) , dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA)) , dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA)) , dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA)) , dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {dx^#(X) -> c_0()} Details: Interpretation Functions: dx(x1) = [0] x1 + [0] one() = [0] a() = [0] zero() = [0] plus(x1, x2) = [1] x1 + [1] x2 + [8] times(x1, x2) = [1] x1 + [1] x2 + [9] minus(x1, x2) = [1] x1 + [1] x2 + [4] neg(x1) = [1] x1 + [8] div(x1, x2) = [1] x1 + [1] x2 + [8] exp(x1, x2) = [1] x1 + [1] x2 + [8] two() = [0] ln(x1) = [1] x1 + [0] dx^#(x1) = [1] x1 + [1] c_0() = [0] c_1() = [0] c_2(x1, x2) = [1] x1 + [1] x2 + [1] c_3(x1, x2) = [1] x1 + [1] x2 + [1] c_4(x1, x2) = [1] x1 + [1] x2 + [1] c_5(x1) = [1] x1 + [0] c_6(x1, x2) = [1] x1 + [1] x2 + [1] c_7(x1) = [1] x1 + [0] c_8(x1, x2) = [1] x1 + [1] x2 + [7] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { dx^#(X) -> c_0() , dx^#(plus(ALPHA, BETA)) -> c_2(dx^#(ALPHA), dx^#(BETA)) , dx^#(exp(ALPHA, BETA)) -> c_8(dx^#(ALPHA), dx^#(BETA)) , dx^#(ln(ALPHA)) -> c_7(dx^#(ALPHA)) , dx^#(div(ALPHA, BETA)) -> c_6(dx^#(ALPHA), dx^#(BETA)) , dx^#(neg(ALPHA)) -> c_5(dx^#(ALPHA)) , dx^#(minus(ALPHA, BETA)) -> c_4(dx^#(ALPHA), dx^#(BETA)) , dx^#(times(ALPHA, BETA)) -> c_3(dx^#(ALPHA), dx^#(BETA))} Details: The given problem does not contain any strict rules